Local Derivations on Subalgebras of τ-Measurable Operators with Respect to Semi-finite von Neumann Algebras
نویسندگان
چکیده
منابع مشابه
Local Derivations on Algebras of Measurable Operators
The paper is devoted to local derivations on the algebra S(M, τ) of τ measurable operators affiliated with a von Neumann algebra M and a faithful normal semi-finite trace τ. We prove that every local derivation on S(M, τ) which is continuous in the measure topology, is in fact a derivation. In the particular case of type I von Neumann algebras they all are inner derivations. It is proved that f...
متن کاملStructure of derivations on various algebras of measurable operators for type I von Neumann algebras
Given a von Neumann algebra M denote by S(M) and LS(M) respectively the algebras of all measurable and locally measurable operators affiliated with M. For a faithful normal semi-finite trace τ on M let S(M, τ) (resp. S0(M, τ)) be the algebra of all τ -measurable (resp. τ -compact) operators from S(M). We give a complete description of all derivations on the above algebras of operators in the ca...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملInteger Operators in Finite Von Neumann Algebras
Motivated by the study of spectral properties of self-adjoint operators in the integral group ring of a sofic group, we define and study integer operators. We establish a relation with classical potential theory and in particular the circle of results obtained by M. Fekete and G. Szegö, see [Fek23,FS55,Sze24]. More concretely, we use results by R. Rumely, see [Rum99], on equidistribution of alg...
متن کاملDerivations on the Algebra of Measurable Operators Affiliated with a Type I von Neumann Algebra
Let M be a type I von Neumann algebra with the center Z and a faithful normal semi-finite trace τ. Let L(M, τ) be the algebra of all τ -measurable operators affiliated with M. We prove that any Z-linear derivation on L(M, τ) is inner and hence automatically continuous in the measure topology. If the lattice of projections from Z is atomic then any derivation on L(M, τ) is Z-linear. This implies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2014
ISSN: 1660-5446,1660-5454
DOI: 10.1007/s00009-014-0447-5